
J. Fluid Mech. (2006), vol. 558, pp. 357–386. c© 2006 Cambridge University Press

doi:10.1017/S0022112006000061 Printed in the United Kingdom

357

On Boussinesq and non-Boussinesq starting
forced plumes

By J IAOJIAN AI1, ADRIAN WING-KEUNG LAW2

AND S. C. M. YU1

1School of Mechanical and Aerospace Engineering, Nanyang Technological University,
Singapore 639798

2School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798

(Received 5 August 2005 and in revised form 14 November 2005)

The characteristics of Boussinesq and non-Boussinesq starting forced plumes were
investigated in this study. Two distinct periods in the transient plume penetration are
identified, namely, the period of flow development (PFD) and period of developed
flow (PDF). Similarity solutions are developed in PDF by incorporating the behaviour
of an isolated buoyant vortex ring and recent laboratory results on the trailing forced
plume, and the temporal variation of the penetration rate is derived during the
different phases of jet-like, transitional and plume-like flow. To verify the similarity
solutions, experiments were conducted on vertical starting forced plumes using
combined particle image velocimetry (PIV) and planar laser induced fluorescence
(PLIF) with refractive index matching. The discharge Reynolds number was varied
from 3773 to 7403 and the range of excess densities (∆0 = (ρ∞ − ρ0)/ρ∞, where ρ0 and
ρ∞ are initial plume and ambient density, respectively) from 2.77 % to 25.07 %. The
experimental results revealed distinct differences between plumes having an initial
density difference of larger or smaller than 15 % due to the non-Boussinesq effects.
Thus, the value of 15 % was employed as an approximate criterion to divide the
plumes into Boussinesq versus non-Boussinesq cases. The measured penetration rates
and the mean centreline axial velocity of the Boussinesq starting forced plumes
agreed well with the analytical predictions at the fully developed stage. However, the
behaviour was substantially more complex for the non-Boussinesq plumes. In the
transient records, it was noted that the time scales for the penetration of the starting
plumes and the velocity development in the trailing forced plume were similar,
but the time scale for the Gaussian profile to become self-similar was somewhat
longer.

1. Introduction
Starting forced plumes are common phenomena with a wide spectrum of physical

scales from the releases of hot ash during volcanic eruptions to the emission of
chemical plumes by accidental or intentional releases in an indoor environment.
Quantifying the mixing and entrainment of the starting forced plumes is thus of
substantial engineering and environmental interests.

A forced plume, or buoyant jet, possesses both initial momentum and buoyancy
fluxes. For a round port with a diameter D, an exit velocity W0, an average initial
density ρ0 and a uniform ambient density ρ∞, the source parameters, i.e. buoyancy,
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Time interval
W0 ρ∞ ρ0 ∆0 Lm between laser

Cases (m s−1) (kg l−1) (kg l−1) (%) Re (mm) Fr0 Λ pulse pair (ms)

C1 0.503 1.0258 0.9974 2.77 3773 78.1 9.80 0.022 4
C2 0.503 1.0552 0.9974 5.48 3773 55.4 6.95 0.044 4
C3 0.987 1.0552 0.9974 5.48 7500 110.8 13.91 0.011 2
C4 0.503 1.1007 0.9974 9.38 3750 42.4 5.32 0.075 4
C5 0.987 1.1007 0.9974 9.38 7403 84.8 10.64 0.019 2
C6 0.503 1.1518 0.9974 13.40 3773 35.5 4.46 0.108 4
C7 0.987 1.1518 0.9974 13.40 7403 71.0 8.91 0.027 2
C8 0.503 1.0997 0.8857 19.45 3773 29.0 3.63 0.161 4
C9 0.987 1.0997 0.8857 19.45 7403 57.9 7.27 0.040 2
C10 0.503 1.1171 0.8370 25.07 3773 26.1 3.26 0.199 4
C11 0.987 1.1171 0.8370 25.07 7403 52.2 6.53 0.050 2

Table 1. Initial parameters of the experiments.

momentum and mass fluxes (B0, M0, Q0), can be defined as,

B0 = 1
4
πD2W0

ρ0 − ρ∞

ρ∞
g =

ρ0 − ρ∞

ρ∞
gQ0 = g′

0Q0, (1a)

M0 = 1
4
πD2W 2

0 , (1b)

Q0 = 1
4
πD2W0, (1c)

where g denotes the acceleration due to gravity and g′
0 = g∆0 is the initial reduced

gravity. A function of the dimensionless source parameters,

Λ =
5Q2

0B0

4αM
5/2
0

, (2)

where α represents the entrainment coefficient, can be used to categorize the buoyant
plumes as suggested by Morton (1959). He defined the pure plumes as Λ = 1, the forced
plumes to be those with an initial momentum flux greater than that of an equivalent
pure plume of the same initial buoyancy flux (i.e. 0 < Λ < 1), and lazy plumes as
Λ > 1. The Λ values shown in table 1 indicate that the experiments conducted
in the present study were all with forced plumes.

A starting forced plume is substantially more complex than a steady forced plume
owing to the interaction between the head vortex and the trailing stem. Based on
published work (e.g. Gharib, Rambod & Shariff 1998; Ai et al. 2005), we find that
the temporal development of a starting forced plume can be separated into two
distinct periods that can be termed the period of flow development (PFD) and
period of developed flow (PDF), in analogy with the zone of flow establishment
(ZFE) and zone of established flow (ZEF) that are well known for a steady jet
(Crow & Champagne 1971; Fischer et al. 1979). PFD represents the initial period
after the fluid ejection, when the exit conditions generate longitudinal and azimuthal
vortices and their interactions lead to complex vortical dynamics near the source
such as the occurrence of vortex coalescence and leapfrogging (Ai et al. 2005). When
the circulation of the head vortex reaches its maximum, the head vortex may then
detach from the trailing stem. The detachment is known as the pinch-off phenomenon
(Gharib et al. 1998). Owing to the decay of the head vortex ring, the detached head
vortex and the trailing forced stem would, however, reconnect after some time, at
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Figure 1. (a) A pictorial sketch of the vortical dynamics in PFD: (i) flow visualization by
PLIF, and (ii) corresponding vector and vorticity map by PIV. The image was obtained in a
starting jet experiment with Re = 4716.

which point the PFD ends and the starting forced plume becomes fully developed,
independent of the exit conditions. Here, the term ‘fully developed’ also implies that
the characteristics of the plume become self-similar and can be evaluated by the
similarity law. Noticeably, because of the pinch-off and reconnection, an overshoot
in penetration is typically observed in PFD (Ai et al. 2005) which can be attributed
to the initial acceleration due to over-pressure at the exit of the nozzle as the forced
plume is initiated (see figure 7 for an illustration). Figure 1(a) shows a sketch of the
pinch-off process in PFD.

The plume characteristics in PDF are relatively simpler and more predictable,
because they depend primarily on the feeding of momentum and buoyancy fluxes
into the head vortex by the trailing stem. Again, in analogy with the interplays between
initial and buoyancy-induced momentum flux in a steady plume, a fully developed
starting forced plume would also experience three phases of penetration behaviour
during its vertical rise: jet-like, transitional and plume-like. Together with the head
vortex formation and interaction phase in PFD, in which the asymptotic behaviour of
the head vortex is significant, the four phases are depicted schematically in figure 1(b).
Three regions, i.e. jet-like, transitional and plume-like, appear sequentially in the
trailing stem. In the asymptotic jet-like and plume-like regions of the trailing stem,
the starting forced plume is dominated by the initial momentum and buoyancy fluxes,
respectively, and its behaviours are comparable to a starting pure jet and pure plume,
respectively. Therefore, the flow in these two asymptotic regions can be deemed as a
pure jet or plume arising from a virtual point source with zero mass flux. In the transi-
tional region, however, the forced plume is influenced by both the initial momentum
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Figure 1. (b) Schematic diagram of the four different phases for the development of a starting
plume. (i) Period of flow development. (ii)–(iv) Period of developed flow. (i) Vortex formation
and interaction phase; (ii) jet-like phase; (iii) transitional phase; (iv) plume-like phase.

and buoyancy fluxes. The head vortex will also undergo four stages, namely, formation,
puff-like, transitional and thermal-like. Note that, depending on the comparative
strength of the initial buoyancy and momentum fluxes, the PFD of the starting forced
plume can overwhelm the jet-like phase through the overshoot of the head vortex
ring. Therefore, a fully developed starting forced plume may directly enter into the
transitional and plume-like phase in PDF.

Previous experimental, theoretical and computational studies focus mostly on either
starting pure jets or starting pure plumes. They include Turner (1962), Delichatsios
(1979), Sangras & Faeth (1999), Pantzlaff & Lueptow (1999) and Diez, Sangras &
Faeth (2003). For starting jets, it has been shown that the transient jet penetration
velocity, ut , is inversely proportional to the square root of time (Witze 1980; Johari,
Zhang & Bourque 1997; Hill & Ouellette 1999; Cossali, Coghe & Araneo 2001; Ai
et al. 2005). On the other hand, Middleton (1975) suggested that the starting plume
penetration has a smaller time exponent of −1/4 based on Turner’s (1962) model
(i.e. ut ∝ B

1/4
0 t−1/4, where t is time). The −1/4 time behaviour for starting plumes is

also supported by the recent analysis of Diez et al. (2003). Delichatsios (1979) further
reported that the advancing velocity at the leading edge of the plume is less than the
velocity in the plume interior with a maximum ratio of 0.42, although both bear the
same temporal development.

There have been comparatively fewer studies on starting forced plumes. Plantzlaff &
Lueptow (1999) reported that positively starting forced plumes have a similar
dependence on time to the pure jets, at least in the momentum-dominated region. Diez
et al. (2003) proposed a time scale t∗ = (D4/B0)

1/3, and suggested that the penetration
distance Zt normalized by D is proportional to the time normalized by this time
scale with a power of 3/4 (i.e. (Zt − Z0)/D ∼ (t/t∗)3/4, where Z0 represents the virtual
origin). By adopting the virtual origin for a bulk correction of the non-self-preserving
behaviours, Diez et al. (2003) did not give a detailed description of the various
developmental phases of the plume penetration as is done here.
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The dynamics of a starting forced plume in PDF relates directly to the coupling
behaviour between the head vortex and the trailing stem. Hence, the penetration
characteristics of the starting forced plume can be predicted using the characteristics
of isolated vortex rings and the trailing stem which can be related to the steady forced
plume via a quasi-steady approximation (Heskestad 1972), in which the properties of
the two are assumed to be similar.

In terms of the separate behaviour of the head vortex and the trailing stem, there is
now substantial knowledge available in the recent literature. On the head vortex, much
of the characteristics of momentum puffs and thermals (without and with buoyancy,
respectively) are now known in a neutral surrounding (Turner 1957; Saffman 1975,
1978; Maxworthy 1977; Didden 1979; Pullin 1979; Glezer 1988; Lundgren & Mansour
1991). The comprehensive reviews of Shariff & Leonard (1992) and Lim & Nickels
(1995) discussed the current understanding of vortex ring phenomena as well as
some unresolved issues. For the trailing forced plume stem, steady-state Boussinesq
characteristics have been investigated in great detail (e.g. Morton, Taylor & Turner
1956; Wyganski & Fiedler 1969; Fischer et al. 1979) and quantitative relation-
ships for the velocity and scalar behaviour are now available with high accuracy
(Papanicolaou & List 1988; Shabbir & George 1994; Wang & Law 2002).

A main objective of the present study is to develop a model for the fully developed
period of a starting Boussinesq forced plume that extends from the asymptotic jet-like
to the asymptotic plume-like phases. Such a detailed model is not available at present.
Subsequently, experiments on starting forced plumes were conducted using combined
particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) with
refractive index matching. The scope of the experiments included a relative density
difference, ∆0, of up to 25.07 %, and thus covered cases of both Boussinesq and
non-Boussinesq starting forced plumes. The experimental results and observations of
the non-Boussinesq cases will be presented for the first time, and it will be shown that
the plume behaviours are distinctly different in the higher density difference cases.

It should be noted that the published work on non-Boussinesq plumes is very
limited. Rooney & Linden (1996) derived the theoretical form of entrainment velocity
across the plume edge which had been postulated from the experimental observations
by Ricou & Spalding (1961). Subsequently, their model was applied to different fire
experiments in Rooney & Linden (1997) and Woods (1997). Zhou, Luo & Williams
(2001) performed a detailed simulation on the non-Boussinesq plumes with two
different large density ratios of 2.0 and 3.0.

In the following, we shall first review the current understanding on the behaviour
of isolated vortex rings and forced plumes. Subsequently, their coupling dynamics for
a starting forced plume are addressed.

2. Isolated vortex ring
Depending on the developmental phase, the cap of a starting forced plume can

be considered as a vortex ring that is similar to a momentum puff (jet-like) or
thermal (plume-like). A turbulent vortex ring or momentum puff being independent of
Reynolds number can be described as a compact turbulent region that is statistically
invariant with respect to the rotation about an axis in the azimuthal direction
(Shariff & Leonard 1992). Helmholtz (1858) proposed a method for computing the
translational speed of thin rings that depends weakly on σ/R (where σ and R are the
characteristic ring core size and ring radius, respectively). The weak dependence can
be ignored to provide an approximate speed for the motion of the vorticity centroid.
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This approach was used by Kelvin (1880) to obtain the speed of a thin steady ring
with uniform vorticity. The method is described as follows.

The momentum of all the fluid moving with a vortex ring that is approximated to
be thin reads (Lamb 1932),

Mv = πρvΓ R2, (3)

where Γ is the circulation, ρv is the mean density of the thermal or vortex ring and
R the ‘mean ring radius’ defined by Lamb (1932) as (denoted in figure 1b(iii)),

R =

⎛
⎜⎜⎝

∫ ∞

0

∫ ∞

0

r2ω dr dh∫ ∞

0

∫ ∞

0

ω dr dh

⎞
⎟⎟⎠

1/2

, (4)

where r and h are the radial and vertical coordinates, respectively, and ω is the local
vorticity. Assuming that the distribution of vorticity in the cap remains similar at
all heights and that the ambient is not stratified so that zero net baroclinic vorticity
is generated by the baroclinic torque, the velocity of the vortex centre, uc, can be
expressed as

uc = C1Γ/R, (5)

where C1 is a constant. The value for C1 should differ between a momentum puff and
a thermal, although their order of magnitude is probably similar. It is convenient for
the present purpose to eliminate Γ from (5) and (3) to give,

Mv = (πρv/C1)R
3uc. (6)

Turner (1957) suggested that a thermal can be regarded as a special case of an
isolated buoyant vortex ring, in which case the increase in momentum is solely due
to the total buoyancy force Fv and the temporal change rate of the momentum can
be expressed as

dMv

dt
= ρ∞Fv. (7)

The laboratory experiments of Sangras & Faeth (1999) showed that a thermal consists
of a region of turbulent buoyant fluid with its radius expanding linearly with distance
as the thermal mixes with its surroundings. The addition of outside fluid takes place
partly by mixing over the thermal front and partly by drawing up fluid from behind.
In this sense, it can be said that a thermal leaves no wake behind.

Overall, we can consider the head vortex as a buoyant ring vortex that is growing
by the turbulent entrainment of the external ambient fluid and the trailing forced
plume.

3. Trailing forced plume
The starting forced plume possesses a trailing stem that with time would develop

into a steady forced plume. Similarity solutions for steady forced plumes were first
investigated by Morton et al. (1956), using conservation equations representing the
mass, momentum and buoyancy fluxes (see Appendix). An important assumption
in this approach is that the local variations in buoyancy are small, such that the
profiles of mean vertical velocity and mean buoyancy are of similar form at all
cross-sections within the plume (Turner 1969). The assumption is equivalent to the
so-called Boussinesq assumption. The model provides a practical approach for the
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simulation of a forced plume, but it cannot be applied to analyse the exit region near
the origin of the forced plume where the profiles are developing and not self-similar.

A detailed experimental investigation on the quantitative characteristics of a vertical
forced plume, or buoyant jet, was performed by Wang & Law (2002) using combined
PIV and PLIF. The investigation covered the three regions of a developed steady
forced plume from jet-like, transitional to plume-like. Based on the experimental
results, they reported that the decay of the centreline velocity Wc over the developed
range is as follows:

log

(√
M0

ZWc

)
= g(ξ ), (8a)

where Z is the axial coordinate and

g(ξ ) = − 1
3
[1+ tanh(k1ξ −η1)]ξ + log

(
1

kpw

)

+ 1
2

[
log

(
1

kpw

)
− log

( √
π

2kjw

)]
[tanh(k2ξ −η2)−1]−k4 exp[−k3(ξ −η3)

2], (8b)

ξ = log

(
Z

Lm

)
, (8c)

where Lm is the momentum length scale which is defined as (Morton 1959; List 1982):

Lm =
M

3/4
0

B
1/2
0

. (9)

Lm is pertinent to buoyant flows and measures the distance required for the buoyancy-
induced momentum to dominate over the momentum of the source flow.

The constants in (8b) were determined by the experiments in Wang & Law (2002)
as: k1 = 3.110, k2 = 2.815, k3 = 6.123, k4 = 0.0797, η1 = 1.831, η2 = 2.067, η3 = 0.4529,
kjw = 6.477 and kpw = 4.13. These constants define quantitatively the self-similar
behaviour of the centreline velocity for the different stages of a forced plume.
Equation (8a) automatically contains the jet-like and plume-like regions. As ξ → −∞,
(8b) reduces to:

g(ξ ) = log

( √
π

2kjw

)
, (10)

which is equivalent to the well-known equation for pure jets (Fischer et al. 1979), i.e.

Wc = kjwW0(Z/D)−1. (11)

As ξ → +∞ and (8b) becomes:

g(ξ ) = − 2
3
ξ + log

(
1

kpw

)
, (12)

which is identical to the asymptotic behaviour for the centreline velocity of a pure
plume (Fischer et al. 1979), i.e.

Wc = kpwB
1/3
0 Z−1/3. (13)
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4. Penetration rate of a starting forced plume
In this section, we shall develop a model for the penetration rate of a starting forced

plume that spans the entire developed range by quantifying the linkage between the
head vortex and the trailing forced plume stem.

As mentioned previously, the original and pioneering conceptualization should be
attributed to Turner (1962) who proposed that a starting plume can be modelled
as a slightly flattened spherical vortex at the head of a quasi-steady plume (see
figure 1b). In Turner’s original model, it was assumed that the trailing plume feeds
mass, momentum and circulation into the spherical head vortex, and that the velocity
of the head vortex, ub at the base of the vortex is a constant fraction, Ab, of the mean
velocity of the trailing plume at the base of the vortex, Wcb, i.e.

Ab = ub/Wcb = constant. (14a)

With this conceptualization, the velocities at the center and front of the head vortex,
uc and ut , respectively, will also be proportional to the plume velocity, Wcc and Wct ,
at the equivalent height. Using Ac and At to denote the ratios correspondingly, we
have

Ac = uc/Wcc, (14b)

At = ut/Wct . (14c)

These ratios, Ab, Ac and At were all assumed constant throughout the evolution of
the starting plume.

For a starting forced plume, the constant assumption for the ratios is invalid because
the forced plume has different phases of development, as shown in figure 1(b), and
the ratios will vary because of the change in the characteristics of the head vortex
from puff to thermal and the trailing forced plume from jet-like to plume-like. We
shall now relax the assumption that the velocity ratios are constant and compute
them directly from the conservation equations.

The variations in Ab, Ac and At can be determined by considering the centreline
velocity decay, equations (8a), (11), (13) and the growth rate of the cap radius. Taking
α′ =drv/dZ as the spreading rate of the visible cap edge, we have

ub = uc

Zb

Zc

= uc

Zc − rv

Zc

= uc

Zc − Zcα
′

Zc

= uc(1 − α′), (15a)

and

ut = uc

Zt

Zc

= uc

Zc + rv

Zc

= uc

Zc + Zcα
′

Zc

= uc(1 + α′). (15b)

From (8a),

Wcb = Wcc/(1 − α′)10−g(ξb)+g(ξc),

Wct = Wcc/(1 + α′)10−g(ξt )+g(ξc),

}
(for trailing forced plumes) (16)

where ξc = log(Zc/Lm) and ξb = log(Zb/Lm). Substituting the above equations into
(15a) and (15b), the relationships for the ratios can be converted to

Ab = Ac(1 − α′)210−g(ξc)+g(ξb), (17a)

At = Ac(1 + α′)210−g(ξc)+g(ξt ). (17b)

By the same reasoning, from (11) and (13) we have

Wcb = Wcc/(1 − α′), Wct = Wcc/(1 + α′) for pure jets (18a)

Wcb = Wcc/(1 − α′)1/3, Wct = Wcc/(1 + α′)1/3 for pure plumes. (18b)



Boussinesq and non-Boussinesq starting forced plumes 365

Equations (17a) and (17b) can be simplified by combining the above equations for a
pure jet or pure plume

Ab = Ac(1 − α′)2, At = Ac(1 + α′)2 for trailing pure jets, (19a)

Ab = Ac(1 − α′)4/3, At = Ac(1 + α′)4/3 for trailing pure plumes. (19b)

Both the momentum and buoyancy fluxes of the leading vortex would be increased
owing to the feeding by the trailing forced plume. The buoyancy flux through the
base of the head vortex can be computed as (see figure 1b(iii))

Bv = B0

(Wcb − ub)

Wcb

= B0(1 − Ab), (20)

where tv represents the time which the head vortex has taken to reach the location
from its source.

The velocity of the trailing forced plume stem at the base of the head vortex is
faster than the vortex by a factor of Ab at any particular time. The rise time for the
trailing forced plume, to reach the base of the head vortex tj can be related to tv as

tj = Abtv. (21)

All the trailing forced plume quantities evaluated at the base of the head vortex may
therefore be written as a function of tv .

The vortex length scale R bears a constant relationship to the Gaussian velocity
width of the trailing forced plume (Turner 1962). This relationship can be expressed
as

R = C2bw. (22)

For a pure plume, Turner (1962) suggested that C2 = 1.2.
The rate of change of the head vortex momentum flux can be expressed as:

dMv/dtv = ρ∞Fv + ρ 1
2
πb2

wW 2
cb(1 − Ab), (23)

where ρ can be considered as the average density at the base of the head vortex.
The first and second terms of the right-hand side of (23) represent the action of the
buoyant force and the rate of injection of momentum flux from the trailing forced
plume, respectively.

The buoyancy force of the head vortex can be calculated by integrating (20), to
give,

Fv =

∫ tv

0

B0(1 − Ab) dt ′
v. (24)

Using the behaviour of steady forced plumes (equation (8a)) and replacing bw with
ηwgZ, equation (23) can be integrated to become

Mv = ρ∞B0

∫ tv

0

(∫ tv

0

(1 − Ab) dt ′
v

)
dt ′′

v + 1
2
πρη2

wgM
1/2
0

∫ Zb

0

(1 − Ab)/Ab10−g(ξb)Z′
b dZ′

b.

(25)

Incorporating (6) into (25) yields,

(πρv/C1)R
3uc = ρ∞B0

∫ tv

0

( ∫ tv

0

(1 − Ab) dt ′
v

)
dt ′′

v

+ 1
2
πρη2

wgM
1/2
0

∫ Zb

0

(1 − Ab)/Ab10−g(ξb)Z′
b dZ′

b. (26)
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Figure 2. Variation of Ab with Zb/Lm.

Thus, the relationship between Zb and tv can be computed as:

tv =

∫ Zb

0

1

ub

dZ′
b =

∫ Zb

0

dZ′
b

AbWcb

. (27)

Replacing tv , R and uc with Zb, bw and Wcb, respectively, (26) can be transformed to,(
πρv

C1

)
C3

2η
3
wg

Ab

1 − α′ 10−g(ξb)Z̄2
b =ρ∞B0

∫ Z̄b

0

(∫ Z̄b

0

(1−Ab)
Z′

b dZ′
b

Ab10−g(ξb)

)
Z′′

b dZ′′
b

Ab10−g(ξb)

+ 1
2
πρη2

wgM
1/2
0

∫ Z̄b

0

(1 − Ab)/Ab10−g(ξb)Z′
b dZ′

b, (28)

where Z̄b =Zb/Lm.
For Boussinesq starting forced plumes, ρv ≈ ρ∞ ≈ ρ, equation (28) can then be

written as(
π

C1

)
C3

2η
3
wg

Ab

1 − α′ 10−g(ξb)Z̄2
b = B0

∫ Z̄b

0

(∫ Z̄b

0

(1 − Ab)
Z′

b dZ′
b

Ab10−g(ξb)

)
Z′′

b dZ′′
b

Ab10−g(ξb)

+ 1
2
πη2

wgM
1/2
0

∫ Z̄b

0

(1 − Ab)/Ab10−g(ξb)Z′
b dZ′

b. (29)

Taking the values of C1 = 0.14, C2 = 1.2 from Turner (1962), ηwg =0.105 from Wang &
Law (2002), and α′ =0.16 from the present experiments (further discussion will be
provided in § 6.1.2), the value of Ab can be computed from (29) using iteration
methods.

Figure 2 shows the results of the iterations. It can be seen that the value of Ab starts
at 0.33 in the jet-like region, increases throughout the transition and then reaches
a steady value of 0.418 in the plume-like region when Zb/Lm > 30. In other words,
the head vortex is being injected with a progressively larger amount of mass and
momentum fluxes by the trailing stem as the forced plume enters into the jet-like,
transitional and plume-like phases consecutively. It is important to note that Turner
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(1962) obtained a measured value of 0.38 for Ab which is approximately in the middle
of the computed range (0.33–0.418). The value of 0.418 is in excellent agreement with
the maximum theoretical value (0.42) derived by Delichatsios (1979) in his analytical
work on starting plumes. His theoretical value was obtained by applying a shock
(jump) condition at the base of the vortex with the value of buoyancy after the shock
assumed to be 0. In reality, the shock would not be so abrupt and thus the value of
Ab can only approach 0.42 asymptotically.

Let us verify the computational results in figure 2 in the asymptotic phases (i.e.
jet-like and plume-like regions). The rate of change of momentum flux for the head
vortex as a momentum puff, i.e. Bv = 0, (equation (23)) can be simplified to

dMv/dtv = 1
2
πρb2

wW 2
cb(1 − Ab). (30)

Substituting (11) into (30), we obtain

∫ Zb

0

1 − Ab

2Ab

Z′
bdZ′

b =
C3

2

C1

Ab

1 − α′ ηwg(Zb)
2, (31)

where Zb = Zb/D. From (31), Ab can be solved analytically as,

Ab =

−1 +

√
16ηwgC

3
2

C1(1 − α′)
+ 1

8ηwgC
3
2

C1(1 − α′)

= 0.33. (32)

The value of 0.33 is identical to the value determined by the iteration methods shown
in figure 2. With the same reasoning, replacing g(ξ ) in (29) with the results of a steady
pure plume (equation (12)), Ab can be obtained as a constant with the magnitude of
0.418.

Given the value of Ab, the velocity at the base of the head vortex can be determined:

ub = AbWcb = Ab10−g(ξb)Z−1M
1/2
0 . (33)

Substituting the results of the forced plume velocity (equation (33)) into (27), the
penetration rate for a starting Boussinesq forced plume can finally be obtained as,

t̄v =

∫ Z̄b

0

Z′
bdZ′

b

Ab10−g(ξb)
=

∫ Z̄t

0

Z′
t (1 − α′)/(1 + α′)d[Z′

t (1 − α′)/(1 + α′)]

Ab10−g(ξb)
, (34)

where t̄v = tvB0/M0 and Z̄t = Zt/Lm are normalized travelling time and distance for
the front of the head vortex, respectively.

The penetration behaviour described by (34) is plotted in figure 3. The penetration
time derived in (34) covers the various phases in PDF. For verification, we shall now
compare the predictions of the penetration time to the measurements of starting jets
and starting plumes reported in the literature.

Incorporating the asymptotic jet-like behaviour, i.e. (10), equation (34) becomes,

tv =

∫ Zb

0

Z′
bdZ′

b

Abkjw

=
1

2Abkjw

[Zt (1 − α′)/(1 + α′)]2, (35)
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Figure 3. Penetration rate of a fully-developed starting plume. —, equation (34);
–·–, equation (38).

where tv = tvW0/D and Zt = Zt/D. Using 0.33, 6.477 and 0.16 to replace the constants
Ab, kjw and α′, respectively, (35) gives

Zt = 2.853(tv)
1/2. (36)

For the numerical coefficient in (36), Sangras et al. (2003) obtained a value of 2.6
from their experiments on starting jets, which is approximately 10 % less that the
prediction in (36), while Lahbabi, Boree & Charnay (1993) measured a value of 2.9
and Witze (1980) from 2.5 to 3.2, which are nearly identical to the present analytical
results. Note that Sangras et al. used a video-based technique for their laboratory
measurements and thus it can be expected that the accuracy was lower than for the
other more advanced imaging techniques such as PLIF.

For plume-like behaviour, incorporating (12), equation (34) simplifies to,

t̄v =

∫ Z̄b

0

(Z′
b)

1/3 dZ′
b

Abkpw

=
3

4

1

Abkpw

[Z̄t (1 − α′)/(1 + α′)]4/3. (37)

Substituting the constants (Ab = 0.418, kpw = 4.13 and α′ = 0.16) into (37), yields,

Z̄t = 2.579(̄tv)
3/4. (38)

The numerical coefficient in (38) is very close to Middleton’s (1975) results on starting
pure plumes. From analytical derivations, Middleton concluded that the velocity of
the head vortex for a starting plume decays in the following manner

uc =
51/2

2α1/2π1/4
AcB0(tv)

−1/4. (39)

Based on Turner’s experimental results, α = 0.09 and Ac = 0.49, equation (39) can
be converted to,

Zt = 2.536(tv)
3/4. (40)

It can be seen that. (38) and (40) are nearly identical.
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Figure 4. Experimental set-up.

The unified penetration time given in (34) covers the three different phases in PDF
including jet-like, transitional and plume-like. Although laboratory measurements on
starting jets and starting plumes have been reported previously, no information on
the transitional phase can be found in the literature as far as we are aware. In the
following, we shall report an experimental investigation with PIV and PLIF that will
provide information on the full range of development of a starting forced plume.

5. Experiments on starting forced plumes
A schematic diagram of the experimental set-up is shown in figure 4. The experi-

ments were conducted in a glass test tank with dimensions of 0.55 m × 0.55 m × 1.2 m
(height). The tank was constructed of glass panels with a stainless steel frame. The
source solution was discharged from a round nozzle seated at the bottom of the tank.
The nozzle was 100 mm in length and had a diameter of 7.5 mm. The source fluid
was supplied from a constant head tank located 2.8 m above the test tank. The water
temperature was kept constant at about 25 ◦C to avoid the influence of temperature
on dye fluorescence. The volumetric flow rate was controlled by a needle valve and
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monitored by a digital flow meter (model Endress+ Hauser Promag 33). A solenoid
valve with an opening time of about 20 ms was used to ensure that the starting
process could be considered to be near instantaneous.

The velocity and concentration measurements were based on a combined PIV/PLIF
approach (Law & Wang 2000). The light source employed a dual-cavity pulsed mini
Nd:YAG laser with a maximum repetition rate of 15 Hz for each cavity. The energy
level was 50 mJ per pulse and the pulse duration was about 7 ns. The emitted laser
light was green with a wavelength of 532 nm. The light sheet had a typical thickness
of 3 mm and a divergence angle of 32◦.

Two double-frame 8-bit digital CCD cameras (Kodak Megaplus ES1.0) were
configured, one for PIV and the other for PLIF. The spatial resolution of the cameras
was 1008 × 1016 pixels. Both cameras were fitted with a Nikon 60 mm lens. The PLIF
camera was set to single-frame mode while the PIV camera worked in double-frame
mode. Thus, the PLIF image was double-exposed by the laser pulse pair, the interval
of which was determined by the cross-correlation PIV requirement. The two cameras
were pointed to nearly the same area with a typical size of 30 cm × 30 cm.

Adaptive cross-correlation was employed to analyse the PIV images. Using a
window size of 32 × 32 pixels and a step size for the moving average of 16 × 16 pixels
(50 % window overlap), the processing resulted in a field measurement of 62 × 62
velocity vectors with a temporal resolution of 5.0 Hz. The time interval between two
successive exposures was set properly in order to limit the maximum displacement of
particles within a quarter of the window size (i.e. 8 pixels, as shown in table 1).

Polyamid seeding particles (PSP, with average diameter of 50 µm) and Rhodamine B
were selected as the tracers for PIV and PLIF. The absorption spectrum of Rhodamine
B is from 460 to 590 nm with a peak at 550 nm, while its emission spectrum ranges
from 550 nm to 680 nm with a peak at 590 nm. An optical 532 nm band-pass filter
was placed in front of the PIV camera, allowing only a narrow band of wavelengths
around 532 nm scattered by the seeding particles to pass through. Another optical
590 nm high-pass filter was attached to the PLIF camera, allowing through only the
fluorescent light emitted from the dye tracer.

A total of 11 tests were performed and the experimental parameters are given in
table 1. The first seven cases had a relatively small density difference of up to 15 %.
In these cases, saline was employed as the ambient solution and fresh water as the
plume fluid. This combination of fresh and saline water is commonly adopted for
experimentation on forced plumes within the Boussinesq range (e.g. Wang & Law
2002; Diez et al. 2003).

We also conducted four experiments with larger density differences (20 % and
25 %) to investigate the behaviour of non-Boussinesq starting forced plumes. In order
to include these higher density difference cases, a combination of light-weight ethanol
solution and heavy calcium chloride solution was used instead. The two solutions
were chosen because they can have a similar refractive index while having vastly
different densities depending on the concentrations of ethanol and calcium chloride,
as shown in figure 5. The matching refraction index was required in order to avoid
optical distortion of the PIV/PLIF images.

6. Experimental results and discussions
The general observation of a typical starting forced plume in the experiments is

shown in figure 6 (Case C3). The first image (figure 6-001) was recorded at 0.2 s after
the forced plume was initiated. The series of images had a time interval of 0.2 s. In
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Figure 5. Refractive indices versus densities of –·–, calcium chloride and —, ethanol.

the beginning, the forced plume was pushed upward into the ambient fluid by the
initial momentum flux, and a puff was formed with the intrusion. The starting forced
plume then began to initiate a complex sequence of vortex leapfrog, coalescence,
pinch-off and reconnection (cf. figure 1a and Ai et al. 2005). During this developing
period, the penetration accelerated to a maximum value and then started to decelerate
towards the temporal behaviour of the developed flow. This phenomenon of initial
acceleration is called overshooting. In addition to the penetration rate, overshoot is
also commonly observed in the growth of the head vortex size (Maxworthy 1977;
Didden 1979; Ai et al. 2005). In our experiments, overshoot was typically recorded in
the penetration results (cf. § 6.1.1).

From the images, a trailing jet was formed behind the head intrusion (see figure 6)
immediately after the forced plume was started. After some time, a cap vortex became
distinguishable with an obvious boundary (as indicated by the circle in figure 6-009).
At the same time, the advancing head vortex was fed with fluid from the trailing
forced plume which added buoyancy and momentum fluxes to the vortex. The flow-
visualization records showed that the cap vortex grew continuously in size, and then
emanated into the ambient fluid at the time of the pinch-off (see figure 6-003). The
detachment occurred momentarily and visibly (although in some cases the pinch-off
could not be observed well because of the instant reconnection) and the head vortex
was subsequently reconnected (see figure 6-004) to the stem which completed the
developing phase in PFD. After the reconnection, a new head vortex was formed
engulfing the initial vortex while leading the trailing forced plume.

We shall now address the Boussinesq and non-Boussinesq cases separately in the
following with demarcation for the two cases set at 15 %. The judgment is based on
the experimental observations of the behaviours of the starting forced plume or the
trailing buoyant jet, i.e. the penetration rate and centreline velocity. As presented in the
following, we observed distinct differences between plumes having an initial density
of larger or smaller than 15 %, and thus the value was adopted as an approximate
criterion whether the Boussinesq approximation for small density differences can be
made or not.
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Figure 6. Sequence of PLIF images through the central axis of symmetry showing the
evolution of a starting plume for Case C3. The first image was 0.2 s after the initial start of
the plume. The time interval of the images is 0.2 s.

6.1. Boussinesq starting forced plumes

6.1.1. Streamwise penetration of head vortex

For Boussinesq starting forced plumes, Diez et al. (2003) proposed the penetration
time as:

(Zt − Z0)/D = Cz(t/t∗)3/4, (41)
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Figure 7. Normalized streamwise penetration distance (Zt − Z0)/D as a function of
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where Cz and Z0 are best-fit empirical parameters of self-preserving scaling relation-
ships, t∗ is defined as:

t∗ = (D4/B0)
1/3. (42)

Using this time scale, the experimental results on the penetration rate are plotted
in figure 7. The virtual origin was set as Z0/D = 7.0 in this figure following the
suggestion by Diez et al. (2003). It can be seen that although the time exponent can
be fitted to be 3/4, the coefficient Cz does not appear to be a constant. Note that
the knee at t/t∗ ≈ 10 signifies the developing period of the forced plume. This knee
can be related to the overshoot phenomenon as mentioned above. In all experiments,
the developing phase of the forced plume dominated the initial period such that the
jet-like phase was not observed and the characteristics in this phase need to be further
explored in the future.

Using Lm as the length scale, figure 8 shows the penetration height as a function of
time for the Boussinesq cases. A time scale, defined as M0/B0 (Pantzlaff & Lueptow
1999), can be used to identify the three developed phases of the forced plume (Fischer
et al. 1979). The jet-like phase occurs when t � M0/B0, while the transitional phase
is dominated by both initial momentum and buoyancy fluxes when t ∼ M0/B0. When
t � M0/B0, the forced plume becomes similar to a starting pure plume.

It can be observed that the analytical model in (34) gives a reliable prediction on
the behaviour of the starting forced plume in PDF, including the transitional phase
as well as the asymptotic plume phase. Note that the virtual origin correction, which
is commonly adopted by the previous models in the literature, is not required here
owing to the detailed simulation of the different phases. As shown in figure 8, the
experimental data in the present experiments (cases with ∆0 � 15%) are in excellent
agreement with (34) in the PDF, while in the PFD, the starting forced plume behaves
differently as expected.
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6.1.2. Radial penetration

The corresponding temporal variation of the maximum radial penetration distance
can be expressed in terms of the streamwise penetration distance, as follows:

(rv − D/2)/Z =
drv

dZ
= α′, (43)

where α′ is the spreading rate of the trailing forced plume, and Z is the local height
(rather than the distance to the vortex front). For both starting and steady plumes, α′

is typically taken to be a constant. Figure 9 shows the values of α′ to be approximately
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Figure 10. Centreline decay of mean axial velocity with equation (8a).
—, Wang & Law (2002).

0.16±0.03 in PDF, in reasonable agreement with Diez et al. (2003) and Turner (1962)
who obtained 0.16 and 0.18 for starting plumes, respectively. From figure 9, it can
also be seen that due to the initial vortex dynamics, the spreading rate of the head
vortex in PFD was larger. Subsequently, as the pinch-off occurred and the feeding
of buoyancy and circulation into the head vortex ceased, the spreading rate began to
decrease because of the lower entrainment until the head vortex reconnected with the
trailing stem. Throughout the development, the Gaussian velocity width also showed
a monotonic increase until it reached the steady-state values (cf. § 6.6).

6.1.3. Boussinesq trailing forced plumes

For the Boussinesq cases, the mean axial velocity decay along the centreline of the
trailing forced plume is plotted in figure 10. In the figure, the solid line represents
the results of Wang & Law (2002) for a steady buoyancy jet. They reported that
for Z/Lm < 0.6 the flow is jet-like, and for Z/Lm > 6 the flow is plume-like. Near
the forced plume exit, the experimental data deviated from the self-similar solution.
As mentioned above, this is because the flow in this zone has not established self-
similarity and thus the similarity solutions are not applicable. Similar to the results
of the penetration rate for the non-Boussinesq cases, the mean centreline velocity
became self-similar at the location of Z/Lm ≈ 2. Figure 10 shows that the trailing
forced plume overshot the jet-like area and entered the transitional phase in PDF
directly. The figure further implies that the stronger the initial momentum, the shorter
the dimensionless time of the PFD would be.

Figure 11 shows the variation of the axial velocity with the plume penetration. The
figure was plotted according to the similarity solution

Wc

W0

= kpw

(
π

4

)1/3

Fr−2/3
0

(
Z

D

)−1/3

, (44)
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which is another form of (13) and reflects the variation of the actual mean centreline
velocity. The Froude number Fr0 reads

Fr0 =
W0√
∆0D

. (45)

The graph illustrates that the non-dimensional centreline velocity developed as
expected when ∆0 � 15% (i.e. Boussinesq cases). The order of the lines depends
on initial Froude numbers (as shown in table 1). However, it shows totally different
characteristics for the non-Boussinesq cases. The details for the non-Boussinesq cases
will be presented in § 6.2.3.

6.2. Non-Boussinesq starting forced plumes

6.2.1. Streamwise penetration of head vortex

As shown in figure 8, the experimental results for the non-Boussinesq cases showed
larger deviation than the Boussinesq cases with similar initial velocity. The differences
between the Boussinesq and non-Boussinesq forced plumes occurred mainly in the
region near the source and were due to the strong non-Boussinesq effects. The
reinforced buoyancy initially accelerated the leading vortex (puff) and boosted the
penetration rate. With continuous dilution, the non-Boussinesq effects diminished
away from the source. Thus, the difference between the two cases can be corrected
by the virtual origin method to account for the near-field effects.

Carlotti & Hunt (2005) replaced the actual non-Boussinesq area source located at
Z = 0 with an idealized point source located at a virtual origin Z = Z0, and proposed
the asymptotic analytical expressions for the pure, lazy and forced plumes valid for
large vertical distances above the non-Boussinesq source. A characteristic length scale,
related to the buoyancy B0 and gravity g, is proposed as:


0 =
B

2/5
0

(C3g)3/5
, (46)
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Case Q0 (cm3 s−1) g′
0 (cm s−2) B0 (cm4 s−3) M0 (cm4 s−2) 
0 (mm) Z0/Lm

C8 22.22 198.16 4403.5 1117.7 16.9 −1.668
C9 43.61 198.16 8641.6 4304.9 22.0 −1.390
C10 22.22 245.69 5459.7 1117.7 18.3 −1.662
C11 43.61 245.69 10714.4 4304.9 24.0 −1.384

Table 2. Virtual origin correction for starting plumes.

where the constant C3 = 0.1154, was employed to normalize the mass and momentum
fluxes, i.e.

℘0 =

g
ρ0

ρ∞
Q0

(C3g)3/2

5/2
0

(dimensionless mass flux), (47a)

λ̄0 =
M0

C
3/2
3 g


5/2
0

(dimensionless momentum flux). (47b)

According to Carlotti & Hunt (2005), the virtual origin for the non-Boussinesq steady
forced plumes can be expressed as,

Z0


0

= − 3
5

(
λ̄

5/2
0 − ℘2

0

)3/10
∫ ℘0/(λ̄

5/2
0 −℘2

0 )1/2

0

dx

(x2 + 1)1/5
+ 3

5
C4

(
λ̄

5/2
0 − ℘2

0

)3/10
, (48)

where the constant C4 = −0.84. Table 2 gives the values of Z0/Lm. Further discussion
for the virtual origin correction of the non-Boussinesq steady plume was also presented
in Carlotti & Hunt (2005).

The above virtual origin determination was developed for a non-Boussinesq steady
forced plume. For non-Boussinesq ‘starting’ forced plumes, it is uncertain whether a
similar approach can be adopted or not. Using the correction results of Z0/Lm in
table 2, the non-Boussinesq effects on the starting forced plume penetration rates are
illustrated in figure 12(b). For the convenience of comparison, the original data for
the non-Boussinesq cases were extracted from figure 8 and plotted in figure 12(a).
When comparing figure 12(b) with figure 12(a), the corrected penetration rates fitted
significantly better with the model prediction for Boussinesq plumes (equation (34)).
Hence, the experimental results show that the virtual origin correction can also be
applied for the penetration rate of non-Boussinesq starting forced plumes.

6.2.2. Radial penetration

Figure 9 shows that the radial penetration in terms of the spreading rate is the same
(α′ = 0.16 ± 0.03) for both Boussinesq and non-Boussinesq starting forced plumes in
PDF. It is, however, important to note that flapping, a phenomenon which is related
to the large-scale vortices and can significantly increase the spreading rate in steady
plumes (Papps & Wood 1997), was also commonly observed in our experiments on
starting forced plumes. In PFD where the non-Boussinesq effects were more significant
owing to the higher density differences, we noted an important observation that
significantly more flapping was observed in non-Boussinesq cases than in Boussinesq
cases (shown in figures 13a and 13b). However, although the magnitude of the
flapping motion was stronger in non-Boussinesq cases, the spreading rate in PDF did
not increase according to figure 9. This may be because the strong buoyancy in the
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near field pushed the starting forced plume to move up faster, and thus counteracted
the increased spreading rate by the flapping motion.

6.2.3. Non-Boussinesq trailing forced plumes

The variation of centreline velocity decay with penetration distance for the non-
Boussinesq cases is also shown in figure 10. Larger deviations were revealed in the
zone of flow establishment where the characteristics of the flow were significantly
influenced by the source conditions, i.e. initial momentum, buoyancy, volume fluxes
and nozzle geometry, and the flow behaviours were non-self-similar. However, when
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the flow entered the zone of established flow, the behaviours became more predictable
and the deviations were much reduced. From Z/Lm > 6 onward, the data began to
follow the asymptotic behaviour of Boussinesq pure plumes with a net displacement
due to the virtual origin. As discussed previously, the asymptotic behaviour was due
to the continuous dilution with the entrainment of ambient fluid and the diminishing
of density differences between the forced plume and the surrounding. In the region
near the source, however, the non-Boussinesq effects were prevalent and the strong
buoyancy played a significant role in the evolution as evidenced by the deviations in
the initial region in figure 10. In the following, we shall examine more closely the
non-Boussinesq effect in this region.

As shown in figure 11, it is surprising to note that the behaviour of the
centreline velocity for the non-Boussinesq cases dramatically deviated from that
of the Boussinesq cases. Instead of decaying in the observational region, the velocity
increased or remained steady initially before it began to attenuate. In the initial
region of non-Boussinesq starting forced plume, the strong buoyancy overwhelmed
the shear stress at the plume edge and led to an increase in the centreline velocity
in the beginning (as compared to a decrease for Boussinesq plumes). The velocity
eventually reached a peak at Z/D ≈ 30 in Cases C9 and C11. With the entrainment
and the corresponding dilution, the buoyancy began to weaken and then the velocity
started to decrease with distance. For Case C8, the centreline velocity remained steady
for some time suggesting that the buoyancy force balanced the turbulence shear force
during this period. For Case C10, the centreline velocity had a similar trend to that of
C8, but decreased at a slower pace. Figures 10 and 11 demonstrated that it would take
a longer distance for a strongly buoyant forced plume to develop into the asymptotic
states.
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Case ∆0 ( %) bw/Z

C1 2.77 0.103
C2 5.48 0.100
C3 5.48 0.101
C4 9.38 0.099
C5 9.38 0.098
C6 13.40 0.102
C7 13.40 0.098
C8 19.45 0.104
C9 19.45 0.100
C10 25.07 0.105
C11 25.07 0.104

Wang & Law (2002) <3 % 0.105
Fischer et al. (1979) – 0.100

Table 3. Comparison of plume width.
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Figure 14. Cross-sectional variation of the mean axial velocity in Case C1, showing that the
profiles become self-similar when Z/D > 25. —, Gaussian fit.

6.2.4. Plume width and entrainment in non-Boussinesq cases

Table 3 shows the plume characteristics for the present experiments in PDF. From
the table, it can be observed that the velocity radius spreading rate, bw/Z (fitted by
the Gaussian profile as shown in the Appendix), varied from 0.098 to 0.105, and was
near Fischer et al.’s (1979) suggested range, but slightly smaller than the value of
0.105 obtained by Wang & Law (2002) for steady Boussinesq plumes. The results
imply that the proportional constant for the Gaussian radius bw is nearly the same
throughout the three different phases of jet-like, transitional and plume-like.

Figures 14 and 15 demonstrate the Gaussian cross-sectional velocity profiles at
different locations for Cases C1 and C11. The expansion in radius was similar for
both Boussinesq and non-Boussinesq cases, although the locations where the plumes
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Figure 15. Cross-sectional variation of mean axial velocity in Case C11. The profiles became
self-similar only after Z/D > 15. —, Gaussian fit.
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Figure 16. Variation of volume entrainment rate with Z/Lm.

became asymptotic were different. The stronger the initial buoyancy, the shorter the
distance before the plume developed into a self-preserving state.

Figures 16 and 17 plot the variations of volume entrainment rate and entrainment
coefficient (calculated according to (A3)) along the penetration distance, respectively.
For Boussinesq cases (∆0 < 15 %), behaviour was asymptotic (see figures 16 and 17)
and nearly identical to previous observations in steady buoyant plumes (Wang &
Law 2002), with the entrainment coefficient increasing steadily from jet-like (0.0528)
to plume-like (0.0874) during the penetration (figure 17). For non-Boussinesq starting
forced plumes, however, the entrainment behaviour was vastly different in the initial
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Figure 17. Variation of entrainment coefficient with Z/Lm. —, Wang & Law (2002).

region. Corresponding to the initial increase of the centreline velocity (see figure 11),
there was a sharp increase initially for the entrainment coefficient and volume
entrainment for both Cases C11 and C9. The entrainment coefficient jumped to
a peak of 0.12 for Case C11 and 0.1 for Case C9. With the turbulent mixing, the
plume fluid was rapidly diluted by the surrounding fluid and the behaviour finally
achieved a self-preserving state as in the Boussinesq cases (see figures 10 and 17).

7. Temporal evolution of the velocity distribution
According to the penetration rate, the arrival time scale of the plume front should

be t ∼ Z/Lm × M0/B0. In the following, we shall apply this time scale to estimate the
transitional time for the centreline velocity evolution.

Figure 18 shows the variations of the dimensionless velocity versus the penetration
time normalized with the above time scale. From the figure, it can be seen that the
time scale accorded well with the present results and the normalized rising time Tr

was around 0.5. After reaching a local peak owing to overshoot, the velocity began
a periodic pulsation. The pulsation was stronger during the transition period and
was attenuated slightly after the trailing stem became near steady state. The figure
also shows that the centreline velocity fluctuation in the axial direction was about
0.3, which was close to the previous results reported in Shabbir & George (1994) and
Wang & Law (2002) for steady forced plumes.

The typical Gaussian profile evolution with time is illustrated in figure 19.
From the figure, the cross-sectional velocity profile was initially top-hatted when
the plume front first arrived. An overshoot was recorded at t = 2.8 s. Subsequently,
the centreline velocity oscillated around the mean value and the cross-sectional profile
became Gaussian with the radius increasing monotonically towards the steady value.
The Gaussian radius took much longer to attain a steady value than the centreline
velocity.
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Figure 18. Time evolution of centreline velocity.
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Figure 19. Time evolution of cross-sectional velocity at Z/D = 30 for Case C1.

8. Concluding remarks
Two distinct periods, the period of flow development and period of developed

flow, are identified in the penetration behaviour of a starting forced plume. An
analytical model is developed for the penetration rate in the period of developed
flow by coupling the dynamics of the head vortex and the trailing forced plume. The
unified model predicts the penetration rates in the three different phases of jet-like,
transitional and plume-like behaviour in PDF, and computes directly the variations
of the velocity ratios between the head vortex and the trailing forced plume.

Experiments were conducted on both Boussinesq and non-Boussinesq starting
forced plumes using combined PIV and PLIF. For the Boussinesq cases, the
measurements on the penetration rate agreed well with the model predictions. Other



384 J. Ai, A. W.-K. Law and S. C. M. Yu

characteristics such as the radial penetration and entrainment rate also demonstrated
reasonable agreement with previous results reported in the literature. For non-
Boussinesq cases, flapping motion was observed to be more significant, and the
temporal change in the centreline velocity had a strong overshoot in the initial region
unlike the exponential decay observed in the Boussinesq cases. It was found that the
non-Boussinesq effects near the source can be corrected by a virtual origin in the
plume-like region similar to a non-Boussinesq steady forced plume.

A complete analytical model of the penetration of a starting forced plume requires
the detailed simulation of the processes inside the PFD in addition to the PDF.
Further work is obviously required in this area and is currently being pursued.

Scholarship support by the Nanyang Technological University for J.J.A. is gratefully
acknowledged. The authors would also like to thanks the anonymous reviewers for
their constructive comments.

Appendix
In this Appendix, we review some fundamental theory of the steady forced plume,

which is essential to characterize its behaviour, and forms the basis of the presentation
of the experimental results. The theory was first proposed by Morton et al. (1956).

The common assumption is that the profiles of mean velocity and density differences
are Gaussian with length scales bw and bd , and maximum centreline values Wc and
g′

c, respectively, all being functions of the height Z above a virtual origin. Thus, the
cross-sectional variations of the mean axial velocity W and reduced gravity g′ can be
expressed as,

W

Wc

= exp−(r/bw)2, (A 1)

g′ = g(ρ∞ − ρ)/ρ∞ = g′
c exp−(r/bd )2, (A 2)

where ρ is the local density.
The volume flux, Q, can be obtained from the Gaussian velocity profile (equa-

tion (A1)) by integration as πb2
wWc. Morton et al. (1956) proposed the entrainment

principle, namely, that the rate of increase of volume flux per unit height is equal to
2πbwαWc, where α is the entrainment coefficient. The conservation equations over a
particular cross-section can then be written as:

d(b2
wWc)/dZ = 2αbwWc, (A 3)

d(b2
wW 2

c )/dZ = 2b2
dg

′
c, (A 4)

dB/dZ = 0, (A 5)

where the specific buoyancy flux, B , is

B =
πb2

wb2
d

b2
w + b2

d

Wcg
′
c = B0. (A 6)

Assuming bw = bd = b, similarity solutions for b, Wc and g′
c were obtained by Morton

et al. (1956)

b ∝ Z, Wc ∝ B
1/3
0 Z−1/3, g′

c ∝ B
2/3
0 Z−5/3. (A 7)
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